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Grand Unification and Proton Decay

low-energy Supersymmetry?

dominant decay mode YES NO

p→ e+π0

p→ ν̄K+
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Grand Unification and Proton Decay

low-energy Supersymmetry?

dominant decay mode YES NO

p→ e+π0 dim-5 ops suppressed non-SUSY GUTs

orbifold GUTs (SU(5), SO(10), E6)

p→ ν̄K+ SUSY GUTs Trinification

(SU(5), SO(10), E6)

Proton decay mediated by gauge bosons. → dimension-six operators

Proton decay mediated by Higgs superfields. → dimension-five operators

Dimension-five operators are suppressed or absent.

Proton decay mediating gauge bosons are absent.
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Trinification
[Achiman, Stech 1978; de Rújula, Georgi, Glashow 1984; Babu, He, Pakvasa 1986]

GTR = SU(3)C × SU(3)L × SU(3)R × Z3

• rank 6;

• Z3 guarantess that gauge couplings conincide at MU ;

• no need for adjoint Higgs fields;

• up to five light Higgs doublets in its minimal version.

→ Gauge-coupling unification may result at MU ≃ 1014 GeV without
supersymmetry (depending on the masses of the Higgs bosons and the
additional matter).
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Minimal Trinification

Gauge group: GTR = SU(3)C × SU(3)L × SU(3)R × Z3

Fermions:
(

3, 3, 1
)

⊕
(

3, 1, 3
)

⊕
(

1, 3, 3
)

≡ ψQ ⊕ ψQc ⊕ ψL

ψQ →
(

3, 2, 1

6

)

⊕
(

3, 1,−1

3

)

, ψQ =

(

(−d u) B

)

ψQc →
(

3, 1,−2

3

)

⊕ 2
(

3, 1, 1

3

)

, ψQc =







Dc

uc

Bc






,

ψL →
(

1, 2, 1

2

)

⊕ 2
(

1, 2,−1

2

)

⊕ (1, 1, 1) ⊕ 2 (1, 1, 0) , ψL =

(

(E ) (Ec) (L )

N1 ec N2

)

.

In addition to the 15 SM fermions, there are 12 new fermions:

• one vector-like down quark and lepton doublet (5 + 5̄ of SU(5));

• one sterile (i.e., B − L = 0) neutrino.
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Breaking of G TR

Breaking to GSM by a pair of ΦL (1, 3, 3∗) =

(

(φ1) (φ2) (φ3)

S1 S2 S3

)

with

〈

Φ1
L

〉

=







( ) ( ) (

0

0

)

0 0 v1






and

〈

Φ2
L

〉

=







( ) ( ) ( )

v2 0 0







v1 and v2 break GTR to different SU(3)C × SU(2)L × SU(2)R × U(1)

Of the six Higgs doublets, one linear combination is eaten by the gauge bosons that
acquire unification-scale masses.
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Breaking of G TR

Breaking to GSM by a pair of ΦL (1, 3, 3∗) =

(

(φ1) (φ2) (φ3)

S1 S2 S3

)

with

〈

Φ1
L

〉

=







( ) ( ) (

0

0

)

0 0 v1






and

〈

Φ2
L

〉

=







( ) ( ) ( )

v2 0 0







Yukawa couplings:

YQ = ψQc ψQ

(

g1 Φ1
L + g2 Φ2

L

)

, ψQcψQΦ
a
L ≡ (ψQc)i

j (ψQ)
j
k (Φa

L )
k
i

YL = 1

2
ψL ψL

(

h1 Φ1
L + h2 Φ2

L

)

, ψLψLΦ
a
L ≡ ǫijkǫrst (ψL)

r
i (ψL)

s
j (Φa

L )
t
k

→ Heavy states: Bc = cα D
c + sα B

c, E = −sβ E + cβ L , tanα = g1v1

g2v2

massless: dc = −sα D
c + cα B

c, L = cβ E + sβ L , tanβ = h1v1

h2v2

N1 = sβ N1 − cβ N2, N2 = −cβ N1 − sβ N2
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Breaking of G TR

Breaking to GSM by a pair of ΦL (1, 3, 3∗) =

(

(φ1) (φ2) (φ3)

S1 S2 S3

)

with

〈

Φ1
L

〉

=







(

u1

0

) (

0

u2

) (

0

0

)

0 0 v1






and

〈

Φ2
L

〉

=







(

n1

0

) (

0

n2

) (

n3

0

)

v2 0 0







Yukawa couplings: For simplicity, we choose n1,2,3 = 0 here.

YQ = ψQc ψQ

(

g1 Φ1
L + g2 Φ2

L

)

,

YL = 1

2
ψL ψL

(

h1 Φ1
L + h2 Φ2

L

)

,

light fermion masses

mu = g1u2 , md ≃ g1u1 sα ,

mν,N1
= h1u2 , me ≃ h1u1 sβ , mN2

≃
h2

1u1u2 sβ
√

h2
1v

2
1 + h2

2v
2
2

.

No relation between the
masses of the quarks and
leptons; the minimal model
is sufficient to describe the
masses of the quarks and
charged leptons.
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Yukawa couplings: For simplicity, we choose n1,2,3 = 0 here.

YQ = ψQc ψQ

(

g1 Φ1
L + g2 Φ2

L

)

,

YL = 1

2
ψL ψL

(

h1 Φ1
L + h2 Φ2

L

)

,

light fermion masses

mu = g1u2 , md ≃ g1u1 sα ,

mν,N1
= h1u2 , me ≃ h1u1 sβ , mN2

≃
h2

1u1u2 sβ
√

h2
1v

2
1 + h2

2v
2
2

.

The active neutrino, ν,
together with N1 forms a
Dirac state, whereas the
sterile N2 receives a small
Majorana mass.
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Radiative Seesaw Mechanism

One-loop diagrams appear due to the coupling of the neutral fermions to color-charged
Higgs bosons and the cubic couplings of the Higgs fields.

ΦL

(

1, 3, 3
)

ΦQ

(

3, 3, 1
)

ΦQc

(

3, 1, 3
)

ψL ψQ ψQc ψL

ΦQc ΦQ ΦL

ΦQc ΦQ

ψQψLΦQc ψLψQcΦQ

Yukawa couplings including cyclic permutations,

Lq = g (ψQc ψQΦL + ψL ψQcΦQ + ψQ ψLΦQc) + h.c.

Higgs potential with quadratic and cubic terms only,

Lh = m2 (Φ∗

QΦQ + Φ∗

QcΦQc + Φ∗

L ΦL) + [γ1ΦQcΦQΦL + γ2 (ΦLΦLΦL + cyclic) + h.c.]
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Radiative Seesaw Mechanism

One-loop diagrams appear due to the coupling of the neutral fermions to color-charged
Higgs bosons and the cubic couplings of the Higgs fields.

Dominant
graphs:

ΦQ

(

3, 3, 1
)

ΦQc

(

3, 1, 3
)

N1,2 B Bc N1,2

ΦQc ΦQ ΦL

ΦQc ΦQ

ψQψLΦQc ψLψQcΦQ

→ mass matrix for neutrinos (ν,N1, N2)

MN ≃







0 −h1u1 0

−h1u1 sα−βcβ g
2Fq (B) (s2βsα − cα) g2Fq (B)

0 (s2βsα − cα) g2Fq (B) cα−βsβ g
2Fq (B)






,

Fq (q) ∝ mq

(loop integral)
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Radiative Seesaw Mechanism

One-loop diagrams appear due to the coupling of the neutral fermions to color-charged
Higgs bosons and the cubic couplings of the Higgs fields.

Dominant
graphs:

ΦQ

(

3, 3, 1
)

ΦQc

(

3, 1, 3
)

N1,2 B Bc N1,2

ΦQc ΦQ ΦL

ΦQc ΦQ

ψQψLΦQc ψLψQcΦQ

This mechanism is
absent in models
with low-energy
supersymmetry.

→ mass matrix for neutrinos (ν,N1, N2)

MN ≃







0 −h1u1 0

−h1u1 sα−βcβ g
2Fq (B) (s2βsα − cα) g2Fq (B)

0 (s2βsα − cα) g2Fq (B) cα−βsβ g
2Fq (B)






,

Fq (q) ∝ mq

(loop integral)

sterile neutrinos obtain masses λN ∼ Fq (B) ∼ O (MU ),

active neutrino is light, λν ∼
(h1u1)

2

g2Fq (B)
≃ 0.1 eV !
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Neutrino Hierarchy

The neutrino hierarchy is related to the couplings in the quark sector.

The dominant 1-loop contributions are those with the heaviest quark, B3.

→ three-generational mass matrix for the sterile neutrinos (both N1 and N2),
M

N ∼
(

g3i gj3 + gi3 g3j
)

FB3

Assume a structure like [Lola, Ross 1999]

g ∼







ǫ4 ǫ3 ǫ3

ǫ3 ǫ2 ǫ2

ǫ 1 1






, ǫ2 ≃

mc

mt

.

=⇒ mN
3 ∼ mN

2 ∼ FB3
∼ 1012 GeV , mN

1 ∼ ǫ4FB3
∼ 108 GeV .
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Neutrino Hierarchy

The neutrino hierarchy is related to the couplings in the quark sector.

The dominant 1-loop contributions are those with the heaviest quark, B3.

→ three-generational mass matrix for the sterile neutrinos (both N1 and N2),
M

N ∼
(

g3i gj3 + gi3 g3j
)

FB3

Assume a structure like [Lola, Ross 1999]

g ∼







ǫ4 ǫ3 ǫ3

ǫ3 ǫ2 ǫ2

ǫ 1 1






, ǫ2 ≃

mc

mt

.

=⇒ mN
3 ∼ mN

2 ∼ FB3
∼ 1012 GeV , mN

1 ∼ ǫ4FB3
∼ 108 GeV .

Light neutrinos: eigenvalues are proportional to h2

g2 due to the common loop-integral

→ hierarchy is determined by the hierarchy of h

→ quasi-degenerate masses or a normal hierarchy.
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Proton Decay

Quarks and leptons in different multiplets. → No proton decay via gauge bosons.

Instead, proton decay is mediated by ΦQc and ΦQ.

These dimension-six operators are suppressed by small Yukawa couplings,
[

(g ŝβ)hQQQL+ g
(

−ŝ⊤α h
)

dcucecuc
]

−
[

g∗hQQec∗uc∗ + (g ŝβ)
(

−ŝ⊤α h
)∗

dc∗uc∗QL
]

[ŝα (ŝβ): three-generational analogue of the mixing between Dc and Bc (E and L )]

→ Flavor non-diagonal decay dominant, in particular p→ ν̄K+.

ψQ

ψQ
〈ΦL〉

ΦQ ΦQc

ψQ

ψL

ψQ

ψQ

ΦQ Φ∗
Q

ψ∗
Qc

ψ∗
L
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Proton Decay

Quarks and leptons in different multiplets. → No proton decay via gauge bosons.

Instead, proton decay is mediated by ΦQc and ΦQ.

These dimension-six operators are suppressed by small Yukawa couplings,
[

(g ŝβ)hQQQL+ g
(

−ŝ⊤α h
)

dcucecuc
]

−
[

g∗hQQec∗uc∗ + (g ŝβ)
(

−ŝ⊤α h
)∗

dc∗uc∗QL
]

[ŝα (ŝβ): three-generational analogue of the mixing between Dc and Bc (E and L )]

→ Flavor non-diagonal decay dominant, in particular p→ ν̄K+.

Calculate the decay width using chiral perturbation theory,

Γ =
∣

∣

∣

∑

KhadC
∣

∣

∣

2

, C = C
1

γ2
1v

2
1 −m4

A

{

γ1v1 β (LLLL, RRRR)

−m2 α (LLRR, RRLL)
, C = (g h)

→ Estimated lifetime: τ ≃
(

1

g h

)2

× 1028 years.
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Proton Decay

Lifetime: τ ≃

(

1

g h

)2

× 1028 years ⇒ g h . 10−3

g ∼







ǫ4 ǫ3 ǫ3

ǫ3 ǫ2 ǫ2

ǫ 1 1






, ǫ2 ≃

mc

mt

,

h11

h33
∼
me

mτ

mode dominant coeff. exp. limit [y]

ν̄K+ g23h11 2.2 × 1033

ν̄π+ g13h11 2.5 × 1031

µ+K0 g12h12 1.4 × 1033

The decay width of p→ ν̄K+ is close to the experimental limit.
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Supersymmetric Model

In the presence of supersymmetry, unification occurs with two light Higgs doublets (and
their superpartners), or even just one in the split supersymmetry scenario.

Neutrinos acquire eV-scale masses only if the mass differences of the SUSY partners is
of order MU ; the lifetime of the gluino restricts the sfermion masses, ms . 1014 GeV.

[Gambino, Giudice, Slavich 2005]

With low-energy SUSY, one must add higher-dimensional operators or additional Higgs
representations to obtain light, active neutrinos.
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Supersymmetric Model

In the presence of supersymmetry, unification occurs with two light Higgs doublets (and
their superpartners), or even just one in the split supersymmetry scenario.

Neutrinos acquire eV-scale masses only if the mass differences of the SUSY partners is
of order MU ; the lifetime of the gluino restricts the sfermion masses, ms . 1014 GeV.

[Gambino, Giudice, Slavich 2005]

With low-energy SUSY, one must add higher-dimensional operators or additional Higgs
representations to obtain light, active neutrinos.

The LLLL and RRRR operators mediating proton decay have mass-dimension five,
suppressed by (msMU )2. The decay rate is naturally consistent with the experimental
limit if the sfermion masses are above a few hundred TeV.

→ The model with weak-scale SUSY needs ‘flavor suppression’,
similar to models such as SU(5) [cf., e.g., Bajc, Perez, Senjanovic 2002, Emmanuel-Costa, SW 2003];

→ proton decay is unobservable in the split-SUSY case.

The mixed operators, LLRR and RRLL arise from D terms, so will not lead to observable
decay.
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Summary

• The minimal trinified model, GTR = SU(3)C × SU(3)L × SU(3)R × Z3 is an
interesting candidate for non-supersymmetric unification.

Breaking is achieved by only two ΦL

(

1, 3, 3
)

representations which include
five potentially light Higgs doublets.

• Sterile Neutrinos become massive with M ≫MEW via radiative seesaw
mechanism; at MEW, only the SM fermions remain.

• No need to introduce intermediate scales, additional Higgs fields, or
higher-dimensional operators.

• Proton decay is mediated by color-charged Higgs bosons.

The decay mode p→ ν̄K+ is dominant. (ր SUSY models with dim-5 ops.)

• Possibility to verify model:

– no SUSY particles at TeV scale;

– detection of p→ ν̄K+ as dominant decay mode

• Results are also valid for SUSY models, where scalars are as heavy as MU .

– Proton decay is unobservable.
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